We show that if n is a positive integer and , then for every positive integer m and for every real constant c > 0 there are functions such that and for every x ∈ ℝⁿ there exists a strictly increasing sequence (i₁,...,iₙ) of numbers from 1,...,n+m and a w ∈ ℤⁿ such that for .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-6, author = {Tomasz S\l onka}, title = {On affinity of Peano type functions}, journal = {Colloquium Mathematicae}, volume = {126}, year = {2012}, pages = {233-242}, zbl = {1255.26005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-6} }
Tomasz Słonka. On affinity of Peano type functions. Colloquium Mathematicae, Tome 126 (2012) pp. 233-242. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-6/