On affinity of Peano type functions
Tomasz Słonka
Colloquium Mathematicae, Tome 126 (2012), p. 233-242 / Harvested from The Polish Digital Mathematics Library

We show that if n is a positive integer and 2, then for every positive integer m and for every real constant c > 0 there are functions f,...,fn+m: such that (f,...,fn+m)()=n+m and for every x ∈ ℝⁿ there exists a strictly increasing sequence (i₁,...,iₙ) of numbers from 1,...,n+m and a w ∈ ℤⁿ such that (fi,...,fi)(y)=y+w for yx+(-c,c)×n-1.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:284105
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-6,
     author = {Tomasz S\l onka},
     title = {On affinity of Peano type functions},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {233-242},
     zbl = {1255.26005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-6}
}
Tomasz Słonka. On affinity of Peano type functions. Colloquium Mathematicae, Tome 126 (2012) pp. 233-242. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-6/