Assume that S is a commutative complete discrete valuation domain of characteristic p, S* is the unit group of S and is a finite group, where is a p-group and B is a p’-group. Denote by the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). We give necessary and sufficient conditions for to be of OTP representation type, in the sense that every indecomposable -module is isomorphic to the outer tensor product V W of an indecomposable -module V and an irreducible -module W.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-5, author = {Leonid F. Barannyk and Dariusz Klein}, title = {On twisted group algebras of OTP representation type}, journal = {Colloquium Mathematicae}, volume = {126}, year = {2012}, pages = {213-232}, zbl = {1263.16027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-5} }
Leonid F. Barannyk; Dariusz Klein. On twisted group algebras of OTP representation type. Colloquium Mathematicae, Tome 126 (2012) pp. 213-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-5/