Loading [MathJax]/extensions/MathZoom.js
On twisted group algebras of OTP representation type
Leonid F. Barannyk ; Dariusz Klein
Colloquium Mathematicae, Tome 126 (2012), p. 213-232 / Harvested from The Polish Digital Mathematics Library

Assume that S is a commutative complete discrete valuation domain of characteristic p, S* is the unit group of S and G=Gp×B is a finite group, where Gp is a p-group and B is a p’-group. Denote by SλG the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). We give necessary and sufficient conditions for SλG to be of OTP representation type, in the sense that every indecomposable SλG-module is isomorphic to the outer tensor product V W of an indecomposable SλGp-module V and an irreducible SλB-module W.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:284264
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-5,
     author = {Leonid F. Barannyk and Dariusz Klein},
     title = {On twisted group algebras of OTP representation type},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {213-232},
     zbl = {1263.16027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-5}
}
Leonid F. Barannyk; Dariusz Klein. On twisted group algebras of OTP representation type. Colloquium Mathematicae, Tome 126 (2012) pp. 213-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-2-5/