On sums of binomial coefficients modulo p²
Zhi-Wei Sun
Colloquium Mathematicae, Tome 126 (2012), p. 39-54 / Harvested from The Polish Digital Mathematics Library

Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum k=0pa-1(hpa-1k)(2kk)/mk(modp²), where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and pa>3, then k=0pa-1(hpa-1k)(2kk)(-h/2)k((1-2h)/(pa))(1+h((4-2/h)p-1-1))(modp²), where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If pa>3 then k=0pa-1(pa-1k)(2kk)(-1)k3p-1(pa/3)(modp²).

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:284015
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-1-3,
     author = {Zhi-Wei Sun},
     title = {On sums of binomial coefficients modulo p$^2$},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {39-54},
     zbl = {1266.11035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-1-3}
}
Zhi-Wei Sun. On sums of binomial coefficients modulo p². Colloquium Mathematicae, Tome 126 (2012) pp. 39-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-1-3/