Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and , then , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If then .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-1-3,
author = {Zhi-Wei Sun},
title = {On sums of binomial coefficients modulo p$^2$},
journal = {Colloquium Mathematicae},
volume = {126},
year = {2012},
pages = {39-54},
zbl = {1266.11035},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-1-3}
}
Zhi-Wei Sun. On sums of binomial coefficients modulo p². Colloquium Mathematicae, Tome 126 (2012) pp. 39-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm127-1-3/