Stability results for rotationally invariant constant mean curvature surfaces in hyperbolic space
Mohamed Jleli
Colloquium Mathematicae, Tome 126 (2012), p. 269-280 / Harvested from The Polish Digital Mathematics Library

We prove the existence of many constant mean curvature surfaces of revolution with two ends which are immersed or embedded in hyperbolic space. We also study their stability.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:284371
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-2-9,
     author = {Mohamed Jleli},
     title = {Stability results for rotationally invariant constant mean curvature surfaces in hyperbolic space},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {269-280},
     zbl = {1250.53055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-2-9}
}
Mohamed Jleli. Stability results for rotationally invariant constant mean curvature surfaces in hyperbolic space. Colloquium Mathematicae, Tome 126 (2012) pp. 269-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-2-9/