Entropy of a doubly stochastic Markov operator and of its shift on the space of trajectories
Paulina Frej
Colloquium Mathematicae, Tome 126 (2012), p. 205-216 / Harvested from The Polish Digital Mathematics Library

We define the space of trajectories of a doubly stochastic operator on L¹(X,μ) as a shift space (X,ν,σ), where ν is a probability measure defined as in the Ionescu-Tulcea theorem and σ is the shift transformation. We study connections between the entropy of a doubly stochastic operator and the entropy of the shift on the space of trajectories of this operator.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:283700
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-2-5,
     author = {Paulina Frej},
     title = {Entropy of a doubly stochastic Markov operator and of its shift on the space of trajectories},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {205-216},
     zbl = {1285.28020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-2-5}
}
Paulina Frej. Entropy of a doubly stochastic Markov operator and of its shift on the space of trajectories. Colloquium Mathematicae, Tome 126 (2012) pp. 205-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-2-5/