On existence of double coset varieties
Artem Anisimov
Colloquium Mathematicae, Tome 126 (2012), p. 177-185 / Harvested from The Polish Digital Mathematics Library

Let G be a complex affine algebraic group and H,F ⊂ G be closed subgroups. The homogeneous space G/H can be equipped with the structure of a smooth quasiprojective variety. The situation is different for double coset varieties F∖∖G//H. We give examples showing that the variety F∖∖G//H does not necessarily exist. We also address the question of existence of F∖∖G//H in the category of constructible spaces and show that under sufficiently general assumptions F∖∖G//H does exist as a constructible space.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:284211
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-2-3,
     author = {Artem Anisimov},
     title = {On existence of double coset varieties},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {177-185},
     zbl = {1284.14059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-2-3}
}
Artem Anisimov. On existence of double coset varieties. Colloquium Mathematicae, Tome 126 (2012) pp. 177-185. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-2-3/