Let denote the ith prime. We conjecture that there are precisely 28 solutions to the equation in positive integers n and α₁,..., . This conjecture implies an explicit description of the set of solutions to the Brocard-Ramanujan equation. We also propose another variant of the Brocard-Ramanujan problem: describe the set of solutions in non-negative integers of the equation n! + A = x₁²+x₂²+x₃² (A fixed).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-1-7, author = {Andrzej D\k abrowski}, title = {On the Brocard-Ramanujan problem and generalizations}, journal = {Colloquium Mathematicae}, volume = {126}, year = {2012}, pages = {105-110}, zbl = {1308.11039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-1-7} }
Andrzej Dąbrowski. On the Brocard-Ramanujan problem and generalizations. Colloquium Mathematicae, Tome 126 (2012) pp. 105-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-1-7/