On the Brocard-Ramanujan problem and generalizations
Andrzej Dąbrowski
Colloquium Mathematicae, Tome 126 (2012), p. 105-110 / Harvested from The Polish Digital Mathematics Library

Let pi denote the ith prime. We conjecture that there are precisely 28 solutions to the equation n²-1=pαpkαk in positive integers n and α₁,..., αk. This conjecture implies an explicit description of the set of solutions to the Brocard-Ramanujan equation. We also propose another variant of the Brocard-Ramanujan problem: describe the set of solutions in non-negative integers of the equation n! + A = x₁²+x₂²+x₃² (A fixed).

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:284217
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-1-7,
     author = {Andrzej D\k abrowski},
     title = {On the Brocard-Ramanujan problem and generalizations},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {105-110},
     zbl = {1308.11039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-1-7}
}
Andrzej Dąbrowski. On the Brocard-Ramanujan problem and generalizations. Colloquium Mathematicae, Tome 126 (2012) pp. 105-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-1-7/