Finite groups of OTP projective representation type
Leonid F. Barannyk
Colloquium Mathematicae, Tome 126 (2012), p. 35-51 / Harvested from The Polish Digital Mathematics Library

Let K be a field of characteristic p > 0, K* the multiplicative group of K and G=Gp×B a finite group, where Gp is a p-group and B is a p’-group. Denote by KλG a twisted group algebra of G over K with a 2-cocycle λ ∈ Z²(G,K*). We give necessary and sufficient conditions for G to be of OTP projective K-representation type, in the sense that there exists a cocycle λ ∈ Z²(G,K*) such that every indecomposable KλG-module is isomorphic to the outer tensor product V W of an indecomposable KλGp-module V and a simple KλB-module W. We also exhibit finite groups G=Gp×B such that, for any λ ∈ Z²(G,K*), every indecomposable KλG-module satisfies this condition.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:283789
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-1-2,
     author = {Leonid F. Barannyk},
     title = {Finite groups of OTP projective representation type},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {35-51},
     zbl = {1242.16024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-1-2}
}
Leonid F. Barannyk. Finite groups of OTP projective representation type. Colloquium Mathematicae, Tome 126 (2012) pp. 35-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm126-1-2/