In the main result, partially answering a question of Telgársky, the following is proven: if X is a first countable R₀-space, then player β (i.e. the EMPTY player) has a winning strategy in the strong Choquet game on X if and only if X contains a nonempty -subspace which is of the first category in itself.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-8, author = {L\'aszl\'o Zsilinszky}, title = {On $\beta$-favorability of the strong Choquet game}, journal = {Colloquium Mathematicae}, volume = {122}, year = {2011}, pages = {233-243}, zbl = {1236.91038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-8} }
László Zsilinszky. On β-favorability of the strong Choquet game. Colloquium Mathematicae, Tome 122 (2011) pp. 233-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-8/