In the main result, partially answering a question of Telgársky, the following is proven: if X is a first countable R₀-space, then player β (i.e. the EMPTY player) has a winning strategy in the strong Choquet game on X if and only if X contains a nonempty -subspace which is of the first category in itself.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-8,
author = {L\'aszl\'o Zsilinszky},
title = {On $\beta$-favorability of the strong Choquet game},
journal = {Colloquium Mathematicae},
volume = {122},
year = {2011},
pages = {233-243},
zbl = {1236.91038},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-8}
}
László Zsilinszky. On β-favorability of the strong Choquet game. Colloquium Mathematicae, Tome 122 (2011) pp. 233-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-8/