On β-favorability of the strong Choquet game
László Zsilinszky
Colloquium Mathematicae, Tome 122 (2011), p. 233-243 / Harvested from The Polish Digital Mathematics Library

In the main result, partially answering a question of Telgársky, the following is proven: if X is a first countable R₀-space, then player β (i.e. the EMPTY player) has a winning strategy in the strong Choquet game on X if and only if X contains a nonempty Wδ-subspace which is of the first category in itself.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:284053
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-8,
     author = {L\'aszl\'o Zsilinszky},
     title = {On $\beta$-favorability of the strong Choquet game},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {233-243},
     zbl = {1236.91038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-8}
}
László Zsilinszky. On β-favorability of the strong Choquet game. Colloquium Mathematicae, Tome 122 (2011) pp. 233-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-8/