Divergent solutions to the 5D Hartree equations
Daomin Cao ; Qing Guo
Colloquium Mathematicae, Tome 122 (2011), p. 255-287 / Harvested from The Polish Digital Mathematics Library

We consider the Cauchy problem for the focusing Hartree equation iut+Δu+(|·|-3|u|²)u=0 in ℝ⁵ with initial data in H¹, and study the divergence property of infinite-variance and nonradial solutions. For the ground state solution of -Q+ΔQ+(|·|-3|Q|²)Q=0 in ℝ⁵, we prove that if u₀ ∈ H¹ satisfies M(u₀)E(u₀) < M(Q)E(Q) and ||∇u₀||₂||u₀||₂ > ||∇Q||₂||Q||₂, then the corresponding solution u(t) either blows up in finite forward time, or exists globally for positive time and there exists a time sequence tₙ → ∞ such that ||∇u(tₙ)||₂ → ∞. A similar result holds for negative time.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:283488
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-10,
     author = {Daomin Cao and Qing Guo},
     title = {Divergent solutions to the 5D Hartree equations},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {255-287},
     zbl = {1238.35108},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-10}
}
Daomin Cao; Qing Guo. Divergent solutions to the 5D Hartree equations. Colloquium Mathematicae, Tome 122 (2011) pp. 255-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-2-10/