Carmichael numbers composed of primes from a Beatty sequence
William D. Banks ; Aaron M. Yeager
Colloquium Mathematicae, Tome 122 (2011), p. 129-137 / Harvested from The Polish Digital Mathematics Library

Let α,β ∈ ℝ be fixed with α > 1, and suppose that α is irrational and of finite type. We show that there are infinitely many Carmichael numbers composed solely of primes from the non-homogeneous Beatty sequence α,β=(αn+β)n=1. We conjecture that the same result holds true when α is an irrational number of infinite type.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:284092
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-1-9,
     author = {William D. Banks and Aaron M. Yeager},
     title = {Carmichael numbers composed of primes from a Beatty sequence},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {129-137},
     zbl = {1276.11151},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-1-9}
}
William D. Banks; Aaron M. Yeager. Carmichael numbers composed of primes from a Beatty sequence. Colloquium Mathematicae, Tome 122 (2011) pp. 129-137. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-1-9/