On the differentiability of certain saltus functions
Gerald Kuba
Colloquium Mathematicae, Tome 122 (2011), p. 15-30 / Harvested from The Polish Digital Mathematics Library

We investigate several natural questions on the differentiability of certain strictly increasing singular functions. Furthermore, motivated by the observation that for each famous singular function f investigated in the past, f’(ξ) = 0 if f’(ξ) exists and is finite, we show how, for example, an increasing real function g can be constructed so that g'(x)=2x for all rational numbers x and g’(x) = 0 for almost all irrational numbers x.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:283687
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-1-3,
     author = {Gerald Kuba},
     title = {On the differentiability of certain saltus functions},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {15-30},
     zbl = {1251.26004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-1-3}
}
Gerald Kuba. On the differentiability of certain saltus functions. Colloquium Mathematicae, Tome 122 (2011) pp. 15-30. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm125-1-3/