Poisson's equation and characterizations of reflexivity of Banach spaces
Vladimir P. Fonf ; Michael Lin ; Przemysław Wojtaszczyk
Colloquium Mathematicae, Tome 122 (2011), p. 225-235 / Harvested from The Polish Digital Mathematics Library

Let X be a Banach space with a basis. We prove that X is reflexive if and only if every power-bounded linear operator T satisfies Browder’s equality xX:supn||k=1nTkx||< = (I-T)X.We then deduce that X (with a basis) is reflexive if and only if every strongly continuous bounded semigroup Tt:t0 with generator A satisfies AX=xX:sups>0||0sTtxdt||<. The range (I-T)X (respectively, AX for continuous time) is the space of x ∈ X for which Poisson’s equation (I-T)y = x (Ay = x in continuous time) has a solution y ∈ X; the above equalities for the ranges express sufficient (and obviously necessary) conditions for solvability of Poisson’s equation.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:283593
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm124-2-7,
     author = {Vladimir P. Fonf and Michael Lin and Przemys\l aw Wojtaszczyk},
     title = {Poisson's equation and characterizations of reflexivity of Banach spaces},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {225-235},
     zbl = {1242.46016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm124-2-7}
}
Vladimir P. Fonf; Michael Lin; Przemysław Wojtaszczyk. Poisson's equation and characterizations of reflexivity of Banach spaces. Colloquium Mathematicae, Tome 122 (2011) pp. 225-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm124-2-7/