We continue the study of ditalgebras, an acronym for "differential tensor algebras", and of their categories of modules. We examine extension/restriction interactions between module categories over a ditalgebra and a proper subditalgebra. As an application, we prove a result on representations of finite-dimensional tame algebras Λ over an algebraically closed field, which gives information on the extension/restriction interaction between module categories of some special algebras Λ₀, called convex in Λ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm124-1-4, author = {R. Bautista and E. P\'erez and L. Salmer\'on}, title = {On restrictions of indecomposables of tame algebras}, journal = {Colloquium Mathematicae}, volume = {122}, year = {2011}, pages = {35-60}, zbl = {1264.16012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm124-1-4} }
R. Bautista; E. Pérez; L. Salmerón. On restrictions of indecomposables of tame algebras. Colloquium Mathematicae, Tome 122 (2011) pp. 35-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm124-1-4/