We extend the definition of Hochschild and cyclic homologies of a scheme over a commutative ring k to define the Hochschild homologies HH⁎(X/S) and cyclic homologies HC⁎(X/S) of a scheme X with respect to an arbitrary base scheme S. Our main purpose is to study product structures on the Hochschild homology groups HH⁎(X/S). In particular, we show that carries the structure of a graded algebra.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-7, author = {Abhishek Banerjee}, title = {A note on product structures on Hochschild homology of schemes}, journal = {Colloquium Mathematicae}, volume = {122}, year = {2011}, pages = {233-238}, zbl = {1262.19004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-7} }
Abhishek Banerjee. A note on product structures on Hochschild homology of schemes. Colloquium Mathematicae, Tome 122 (2011) pp. 233-238. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-7/