A note on product structures on Hochschild homology of schemes
Abhishek Banerjee
Colloquium Mathematicae, Tome 122 (2011), p. 233-238 / Harvested from The Polish Digital Mathematics Library

We extend the definition of Hochschild and cyclic homologies of a scheme over a commutative ring k to define the Hochschild homologies HH⁎(X/S) and cyclic homologies HC⁎(X/S) of a scheme X with respect to an arbitrary base scheme S. Our main purpose is to study product structures on the Hochschild homology groups HH⁎(X/S). In particular, we show that HH(X/S)=nHH(X/S) carries the structure of a graded algebra.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:284141
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-7,
     author = {Abhishek Banerjee},
     title = {A note on product structures on Hochschild homology of schemes},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {233-238},
     zbl = {1262.19004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-7}
}
Abhishek Banerjee. A note on product structures on Hochschild homology of schemes. Colloquium Mathematicae, Tome 122 (2011) pp. 233-238. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-7/