Estimates on inner and outer radii of unit balls in normed spaces
Horst Martini ; Zokhrab Mustafaev
Colloquium Mathematicae, Tome 122 (2011), p. 211-217 / Harvested from The Polish Digital Mathematics Library

The purpose of this paper is to continue the investigations on extremal values for inner and outer radii of the unit ball of a finite-dimensional real Banach space for the Holmes-Thompson and Busemann measures. Furthermore, we give a related new characterization of ellipsoids in d via codimensional cross-section measures.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:283519
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-5,
     author = {Horst Martini and Zokhrab Mustafaev},
     title = {Estimates on inner and outer radii of unit balls in normed spaces},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {211-217},
     zbl = {1231.52005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-5}
}
Horst Martini; Zokhrab Mustafaev. Estimates on inner and outer radii of unit balls in normed spaces. Colloquium Mathematicae, Tome 122 (2011) pp. 211-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-5/