A Sturm-Liouville problem with spectral and large parameters in boundary conditions and the associated Cauchy problem
Jamel Ben Amara
Colloquium Mathematicae, Tome 122 (2011), p. 181-195 / Harvested from The Polish Digital Mathematics Library

We study a Sturm-Liouville problem containing a spectral parameter in the boundary conditions. We associate to this problem a self-adjoint operator in a Pontryagin space Π₁. Using this operator-theoretic formulation and analytic methods, we study the asymptotic behavior of the eigenvalues under the variation of a large physical parameter in the boundary conditions. The spectral analysis is applied to investigate the well-posedness and stability of the wave equation of a string.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:283594
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-2,
     author = {Jamel Ben Amara},
     title = {A Sturm-Liouville problem with spectral and large parameters in boundary conditions and the associated Cauchy problem},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {181-195},
     zbl = {1230.34029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-2}
}
Jamel Ben Amara. A Sturm-Liouville problem with spectral and large parameters in boundary conditions and the associated Cauchy problem. Colloquium Mathematicae, Tome 122 (2011) pp. 181-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-2-2/