On the distribution of the partial sum of Euler's totient function in residue classes
Youness Lamzouri ; M. Tip Phaovibul ; Alexandru Zaharescu
Colloquium Mathematicae, Tome 122 (2011), p. 115-127 / Harvested from The Polish Digital Mathematics Library

We investigate the distribution of Φ(n)=1+i=1φ(i) (which counts the number of Farey fractions of order n) in residue classes. While numerical computations suggest that Φ(n) is equidistributed modulo q if q is odd, and is equidistributed modulo the odd residue classes modulo q when q is even, we prove that the set of integers n such that Φ(n) lies in these residue classes has a positive lower density when q = 3,4. We also provide a simple proof, based on the Selberg-Delange method, of a result of T. Dence and C. Pomerance on the distribution of φ(n) modulo 3.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:284084
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-1-8,
     author = {Youness Lamzouri and M. Tip Phaovibul and Alexandru Zaharescu},
     title = {On the distribution of the partial sum of Euler's totient function in residue classes},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {115-127},
     zbl = {1245.11104},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-1-8}
}
Youness Lamzouri; M. Tip Phaovibul; Alexandru Zaharescu. On the distribution of the partial sum of Euler's totient function in residue classes. Colloquium Mathematicae, Tome 122 (2011) pp. 115-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-1-8/