A new method for counting primes in a Beatty sequence is proposed, and it is shown that an asymptotic formula can be obtained for the number of such primes in a short interval.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-1-5, author = {J\"org Br\"udern and Koichi Kawada}, title = {The localisation of primes in arithmetic progressions of irrational modulus}, journal = {Colloquium Mathematicae}, volume = {122}, year = {2011}, pages = {53-61}, zbl = {1247.11117}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-1-5} }
Jörg Brüdern; Koichi Kawada. The localisation of primes in arithmetic progressions of irrational modulus. Colloquium Mathematicae, Tome 122 (2011) pp. 53-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-1-5/