A new method for counting primes in a Beatty sequence is proposed, and it is shown that an asymptotic formula can be obtained for the number of such primes in a short interval.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-1-5,
author = {J\"org Br\"udern and Koichi Kawada},
title = {The localisation of primes in arithmetic progressions of irrational modulus},
journal = {Colloquium Mathematicae},
volume = {122},
year = {2011},
pages = {53-61},
zbl = {1247.11117},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-1-5}
}
Jörg Brüdern; Koichi Kawada. The localisation of primes in arithmetic progressions of irrational modulus. Colloquium Mathematicae, Tome 122 (2011) pp. 53-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm123-1-5/