The component quiver of a self-injective artin algebra
Alicja Jaworska ; Andrzej Skowroński
Colloquium Mathematicae, Tome 122 (2011), p. 233-239 / Harvested from The Polish Digital Mathematics Library

We prove that the component quiver ΣA of a connected self-injective artin algebra A of infinite representation type is fully cyclic, that is, every finite set of components of the Auslander-Reiten quiver ΓA of A lies on a common oriented cycle in ΣA.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:286277
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-8,
     author = {Alicja Jaworska and Andrzej Skowro\'nski},
     title = {The component quiver of a self-injective artin algebra},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {233-239},
     zbl = {1216.16008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-8}
}
Alicja Jaworska; Andrzej Skowroński. The component quiver of a self-injective artin algebra. Colloquium Mathematicae, Tome 122 (2011) pp. 233-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-8/