We prove that the component quiver of a connected self-injective artin algebra A of infinite representation type is fully cyclic, that is, every finite set of components of the Auslander-Reiten quiver of A lies on a common oriented cycle in .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-8, author = {Alicja Jaworska and Andrzej Skowro\'nski}, title = {The component quiver of a self-injective artin algebra}, journal = {Colloquium Mathematicae}, volume = {122}, year = {2011}, pages = {233-239}, zbl = {1216.16008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-8} }
Alicja Jaworska; Andrzej Skowroński. The component quiver of a self-injective artin algebra. Colloquium Mathematicae, Tome 122 (2011) pp. 233-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-8/