We prove that any linear ordinary differential operator with complex-valued coefficients continuous in an interval I can be factored into a product of first-order operators globally defined on I. This generalizes a theorem of Mammana for the case of real-valued coefficients.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-6,
author = {Roberto Camporesi and Antonio J. Di Scala},
title = {A generalization of a theorem of Mammana},
journal = {Colloquium Mathematicae},
volume = {122},
year = {2011},
pages = {215-223},
zbl = {1230.34011},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-6}
}
Roberto Camporesi; Antonio J. Di Scala. A generalization of a theorem of Mammana. Colloquium Mathematicae, Tome 122 (2011) pp. 215-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-6/