Some results on the kernels of higher derivations on k[x,y] and k(x,y)
Norihiro Wada
Colloquium Mathematicae, Tome 122 (2011), p. 185-189 / Harvested from The Polish Digital Mathematics Library

Let k be a field and k[x,y] the polynomial ring in two variables over k. Let D be a higher k-derivation on k[x,y] and D̅ the extension of D on k(x,y). We prove that if the kernel of D is not equal to k, then the kernel of D̅ is equal to the quotient field of the kernel of D.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:284164
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-3,
     author = {Norihiro Wada},
     title = {Some results on the kernels of higher derivations on k[x,y] and k(x,y)},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {185-189},
     zbl = {1213.13039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-3}
}
Norihiro Wada. Some results on the kernels of higher derivations on k[x,y] and k(x,y). Colloquium Mathematicae, Tome 122 (2011) pp. 185-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-2-3/