Fractional Hardy inequality with a remainder term
Bartłomiej Dyda
Colloquium Mathematicae, Tome 122 (2011), p. 59-67 / Harvested from The Polish Digital Mathematics Library

We prove a Hardy inequality for the fractional Laplacian on the interval with the optimal constant and additional lower order term. As a consequence, we also obtain a fractional Hardy inequality with the best constant and an extra lower order term for general domains, following the method of M. Loss and C. Sloane [J. Funct. Anal. 259 (2010)].

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:283573
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-6,
     author = {Bart\l omiej Dyda},
     title = {Fractional Hardy inequality with a remainder term},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {59-67},
     zbl = {1228.26022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-6}
}
Bartłomiej Dyda. Fractional Hardy inequality with a remainder term. Colloquium Mathematicae, Tome 122 (2011) pp. 59-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-6/