Finite mutation classes of coloured quivers
Hermund André Torkildsen
Colloquium Mathematicae, Tome 122 (2011), p. 53-58 / Harvested from The Polish Digital Mathematics Library

We show that the mutation class of a coloured quiver arising from an m-cluster tilting object associated with a finite-dimensional hereditary algebra H, is finite if and only if H is of finite or tame representation type, or it has at most two simples. This generalizes a result known for cluster categories.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:283637
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-5,
     author = {Hermund Andr\'e  Torkildsen},
     title = {Finite mutation classes of coloured quivers},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {53-58},
     zbl = {1217.16016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-5}
}
Hermund André  Torkildsen. Finite mutation classes of coloured quivers. Colloquium Mathematicae, Tome 122 (2011) pp. 53-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-5/