We show that the mutation class of a coloured quiver arising from an m-cluster tilting object associated with a finite-dimensional hereditary algebra H, is finite if and only if H is of finite or tame representation type, or it has at most two simples. This generalizes a result known for cluster categories.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-5, author = {Hermund Andr\'e Torkildsen}, title = {Finite mutation classes of coloured quivers}, journal = {Colloquium Mathematicae}, volume = {122}, year = {2011}, pages = {53-58}, zbl = {1217.16016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-5} }
Hermund André Torkildsen. Finite mutation classes of coloured quivers. Colloquium Mathematicae, Tome 122 (2011) pp. 53-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-5/