Elasticity of A + XB[X] when A ⊂ B is a minimal extension of integral domains
Ahmed Ayache ; Hanen Monceur
Colloquium Mathematicae, Tome 122 (2011), p. 11-19 / Harvested from The Polish Digital Mathematics Library

We investigate the elasticity of atomic domains of the form ℜ = A + XB[X], where X is an indeterminate, A is a local domain that is not a field, and A ⊂ B is a minimal extension of integral domains. We provide the exact value of the elasticity of ℜ in all cases depending the position of the maximal ideals of B. Then we investigate when such domains are half-factorial domains.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:284256
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-2,
     author = {Ahmed Ayache and Hanen Monceur},
     title = {Elasticity of A + XB[X] when A [?] B is a minimal extension of integral domains},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {11-19},
     zbl = {1228.13002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-2}
}
Ahmed Ayache; Hanen Monceur. Elasticity of A + XB[X] when A ⊂ B is a minimal extension of integral domains. Colloquium Mathematicae, Tome 122 (2011) pp. 11-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-2/