We investigate the elasticity of atomic domains of the form ℜ = A + XB[X], where X is an indeterminate, A is a local domain that is not a field, and A ⊂ B is a minimal extension of integral domains. We provide the exact value of the elasticity of ℜ in all cases depending the position of the maximal ideals of B. Then we investigate when such domains are half-factorial domains.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-2, author = {Ahmed Ayache and Hanen Monceur}, title = {Elasticity of A + XB[X] when A [?] B is a minimal extension of integral domains}, journal = {Colloquium Mathematicae}, volume = {122}, year = {2011}, pages = {11-19}, zbl = {1228.13002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-2} }
Ahmed Ayache; Hanen Monceur. Elasticity of A + XB[X] when A ⊂ B is a minimal extension of integral domains. Colloquium Mathematicae, Tome 122 (2011) pp. 11-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-2/