Let ε be a quartic algebraic unit. We give necessary and sufficient conditions for (i) the quartic number field K = ℚ(ε) to contain an imaginary quadratic subfield, and (ii) for the ring of algebraic integers of K to be equal to ℤ[ε]. We also prove that the class number of such K's goes to infinity effectively with the discriminant of K.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-13, author = {St\'ephane R. Louboutin}, title = {Some quartic number fields containing an imaginary quadratic subfield}, journal = {Colloquium Mathematicae}, volume = {122}, year = {2011}, pages = {139-148}, zbl = {1250.11092}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-13} }
Stéphane R. Louboutin. Some quartic number fields containing an imaginary quadratic subfield. Colloquium Mathematicae, Tome 122 (2011) pp. 139-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-13/