Some quartic number fields containing an imaginary quadratic subfield
Stéphane R. Louboutin
Colloquium Mathematicae, Tome 122 (2011), p. 139-148 / Harvested from The Polish Digital Mathematics Library

Let ε be a quartic algebraic unit. We give necessary and sufficient conditions for (i) the quartic number field K = ℚ(ε) to contain an imaginary quadratic subfield, and (ii) for the ring of algebraic integers of K to be equal to ℤ[ε]. We also prove that the class number of such K's goes to infinity effectively with the discriminant of K.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:286223
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-13,
     author = {St\'ephane R. Louboutin},
     title = {Some quartic number fields containing an imaginary quadratic subfield},
     journal = {Colloquium Mathematicae},
     volume = {122},
     year = {2011},
     pages = {139-148},
     zbl = {1250.11092},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-13}
}
Stéphane R. Louboutin. Some quartic number fields containing an imaginary quadratic subfield. Colloquium Mathematicae, Tome 122 (2011) pp. 139-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm122-1-13/