We give a new Calderón-Zygmund decomposition for Sobolev spaces on a doubling Riemannian manifold. Our hypotheses are weaker than those of the already known decomposition which used classical Poincaré inequalities.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm121-2-1,
author = {N. Badr and F. Bernicot},
title = {New Calder\'on-Zygmund decomposition for Sobolev functions},
journal = {Colloquium Mathematicae},
volume = {120},
year = {2010},
pages = {153-177},
zbl = {1208.42004},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm121-2-1}
}
N. Badr; F. Bernicot. New Calderón-Zygmund decomposition for Sobolev functions. Colloquium Mathematicae, Tome 120 (2010) pp. 153-177. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm121-2-1/