We give a new Calderón-Zygmund decomposition for Sobolev spaces on a doubling Riemannian manifold. Our hypotheses are weaker than those of the already known decomposition which used classical Poincaré inequalities.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm121-2-1, author = {N. Badr and F. Bernicot}, title = {New Calder\'on-Zygmund decomposition for Sobolev functions}, journal = {Colloquium Mathematicae}, volume = {120}, year = {2010}, pages = {153-177}, zbl = {1208.42004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm121-2-1} }
N. Badr; F. Bernicot. New Calderón-Zygmund decomposition for Sobolev functions. Colloquium Mathematicae, Tome 120 (2010) pp. 153-177. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm121-2-1/