Divergence of general operators on sets of measure zero
G. A. Karagulyan
Colloquium Mathematicae, Tome 120 (2010), p. 113-119 / Harvested from The Polish Digital Mathematics Library

We consider sequences of linear operators Uₙ with a localization property. It is proved that for any set E of measure zero there exists a set G for which UG(x) diverges at each point x ∈ E. This result is a generalization of analogous theorems known for the Fourier sum operators with respect to different orthogonal systems.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:283549
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm121-1-10,
     author = {G. A. Karagulyan},
     title = {Divergence of general operators on sets of measure zero},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {113-119},
     zbl = {1209.42003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm121-1-10}
}
G. A. Karagulyan. Divergence of general operators on sets of measure zero. Colloquium Mathematicae, Tome 120 (2010) pp. 113-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm121-1-10/