Let G be a finite group, K a field of characteristic p > 0, and the twisted group algebra of G over K with a 2-cocycle λ ∈ Z²(G,K*). We give necessary and sufficient conditions for to be of semi-wild representation type in the sense of Drozd. We also introduce the concept of projective K-representation type for a finite group (tame, semi-wild, purely semi-wild) and we exhibit finite groups of each type.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm120-2-8, author = {Leonid F. Barannyk}, title = {Finite-dimensional twisted group algebras of semi-wild representation type}, journal = {Colloquium Mathematicae}, volume = {120}, year = {2010}, pages = {277-298}, zbl = {1214.16019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm120-2-8} }
Leonid F. Barannyk. Finite-dimensional twisted group algebras of semi-wild representation type. Colloquium Mathematicae, Tome 120 (2010) pp. 277-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm120-2-8/