Finite-dimensional twisted group algebras of semi-wild representation type
Leonid F. Barannyk
Colloquium Mathematicae, Tome 120 (2010), p. 277-298 / Harvested from The Polish Digital Mathematics Library

Let G be a finite group, K a field of characteristic p > 0, and KλG the twisted group algebra of G over K with a 2-cocycle λ ∈ Z²(G,K*). We give necessary and sufficient conditions for KλG to be of semi-wild representation type in the sense of Drozd. We also introduce the concept of projective K-representation type for a finite group (tame, semi-wild, purely semi-wild) and we exhibit finite groups of each type.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:283962
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm120-2-8,
     author = {Leonid F. Barannyk},
     title = {Finite-dimensional twisted group algebras of semi-wild representation type},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {277-298},
     zbl = {1214.16019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm120-2-8}
}
Leonid F. Barannyk. Finite-dimensional twisted group algebras of semi-wild representation type. Colloquium Mathematicae, Tome 120 (2010) pp. 277-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm120-2-8/