Fedorchuk's fully closed (continuous) maps and resolutions are applied in constructions of non-metrizable higher-dimensional analogues of Anderson, Choquet, and Cook's rigid continua. Certain theorems on dimension-lowering maps are proved for inductive dimensions and fully closed maps from spaces that need not be hereditarily normal, and some of the examples of continua we construct have non-coinciding dimensions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm120-2-3, author = {Jerzy Krzempek}, title = {Fully closed maps and non-metrizable higher-dimensional Anderson-Choquet continua}, journal = {Colloquium Mathematicae}, volume = {120}, year = {2010}, pages = {201-222}, zbl = {1213.54046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm120-2-3} }
Jerzy Krzempek. Fully closed maps and non-metrizable higher-dimensional Anderson-Choquet continua. Colloquium Mathematicae, Tome 120 (2010) pp. 201-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm120-2-3/