Loading [MathJax]/extensions/MathZoom.js
A generalization of Bateman's expansion and finite integrals of Sonine's and Feldheim's type
Giacomo Gigante
Colloquium Mathematicae, Tome 120 (2010), p. 237-254 / Harvested from The Polish Digital Mathematics Library

Let Akk=0+ be a sequence of arbitrary complex numbers, let α,β > -1, let Pₙα,βn=0+∞betheJacobipolynomialsanddefinethefunctions H(α,z)=m=n+(Amzm)/(Γ(α+n+m+1)(m-n)!), G(α,β,x,y)=r,s=0+(Ar+sxrys)/(Γ(α+r+1)Γ(β+s+1)r!s!). Then, for any non-negative integer n, 0π/2G(α,β,x²sin²ϕ,y²cos²ϕ)Pα,β(cos²ϕ)sin2α+1ϕcos2β+1ϕd=1/2H(α+β+1,x²+y²)Pα,β((y²-x²)/(y²+x²)). When Ak=(-1/4)k, this formula reduces to Bateman’s expansion for Bessel functions. For particular values of y and n one obtains generalizations of several formulas already known for Bessel functions, like Sonine’s first and second finite integrals and certain Neumann series expansions. Particular choices of Akk=0+ allow one to write all these type of formulas for specific special functions, like Gegenbauer, Jacobi and Laguerre polynomials, Jacobi functions, or hypergeometric functions.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:284271
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-2-6,
     author = {Giacomo Gigante},
     title = {A generalization of Bateman's expansion and finite integrals of Sonine's and Feldheim's type},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {237-254},
     zbl = {1197.33010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-2-6}
}
Giacomo Gigante. A generalization of Bateman's expansion and finite integrals of Sonine's and Feldheim's type. Colloquium Mathematicae, Tome 120 (2010) pp. 237-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-2-6/