Decompositions of cyclic elements of locally connected continua
D. Daniel
Colloquium Mathematicae, Tome 120 (2010), p. 321-330 / Harvested from The Polish Digital Mathematics Library

Let X denote a locally connected continuum such that cyclic elements have metrizable Gδ boundary in X. We study the cyclic elements of X by demonstrating that each such continuum gives rise to an upper semicontinuous decomposition G of X into continua such that X/G is the continuous image of an arc and the cyclic elements of X correspond to the cyclic elements of X/G that are Peano continua.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:284062
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-2-10,
     author = {D. Daniel},
     title = {Decompositions of cyclic elements of locally connected continua},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {321-330},
     zbl = {1195.54059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-2-10}
}
D. Daniel. Decompositions of cyclic elements of locally connected continua. Colloquium Mathematicae, Tome 120 (2010) pp. 321-330. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-2-10/