Co-analytic, right-invertible operators are supercyclic
Sameer Chavan
Colloquium Mathematicae, Tome 120 (2010), p. 137-142 / Harvested from The Polish Digital Mathematics Library

Let denote a complex, infinite-dimensional, separable Hilbert space, and for any such Hilbert space , let () denote the algebra of bounded linear operators on . We show that for any co-analytic, right-invertible T in (), αT is hypercyclic for every complex α with |α|>β-1, where βinf||x||=1||T*x||>0. In particular, every co-analytic, right-invertible T in () is supercyclic.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:283801
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-9,
     author = {Sameer Chavan},
     title = {Co-analytic, right-invertible operators are supercyclic},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {137-142},
     zbl = {1206.47010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-9}
}
Sameer Chavan. Co-analytic, right-invertible operators are supercyclic. Colloquium Mathematicae, Tome 120 (2010) pp. 137-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-9/