Separated sequences in asymptotically uniformly convex Banach spaces
Sylvain Delpech
Colloquium Mathematicae, Tome 120 (2010), p. 123-125 / Harvested from The Polish Digital Mathematics Library

We prove that the unit sphere of every infinite-dimensional Banach space X contains an α-separated sequence, for every 0<α<1+δ̅X(1), where δ̅X denotes the modulus of asymptotic uniform convexity of X.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:284333
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-7,
     author = {Sylvain Delpech},
     title = {Separated sequences in asymptotically uniformly convex Banach spaces},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {123-125},
     zbl = {1198.46009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-7}
}
Sylvain Delpech. Separated sequences in asymptotically uniformly convex Banach spaces. Colloquium Mathematicae, Tome 120 (2010) pp. 123-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-7/