On Fourier asymptotics of a generalized Cantor measure
Bérenger Akon Kpata ; Ibrahim Fofana ; Konin Koua
Colloquium Mathematicae, Tome 120 (2010), p. 109-122 / Harvested from The Polish Digital Mathematics Library

Let d be a positive integer and μ a generalized Cantor measure satisfying μ=j=1majμSj-1, where 0<aj<1, j=1maj=1, Sj=ρR+bj with 0 < ρ < 1 and R an orthogonal transformation of d. Then ⎧1 < p ≤ 2 ⇒ ⎨supr>0rd(1/α'-1/p')(Jxr|μ̂(y)|p'dy)1/p'Dρ-d/α', xd, ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’,where Jxr=i=1d(xi-r/2,xi+r/2), α’ is defined by ρd/α'=(j=1majp)1/p and the constants D₁ and D₂ depend only on d and p.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:283841
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-6,
     author = {B\'erenger Akon Kpata and Ibrahim Fofana and Konin Koua},
     title = {On Fourier asymptotics of a generalized Cantor measure},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {109-122},
     zbl = {1189.42002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-6}
}
Bérenger Akon Kpata; Ibrahim Fofana; Konin Koua. On Fourier asymptotics of a generalized Cantor measure. Colloquium Mathematicae, Tome 120 (2010) pp. 109-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-6/