Let d be a positive integer and μ a generalized Cantor measure satisfying , where , , with 0 < ρ < 1 and R an orthogonal transformation of . Then ⎧1 < p ≤ 2 ⇒ ⎨, , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’where , α’ is defined by and the constants D₁ and D₂ depend only on d and p.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-6, author = {B\'erenger Akon Kpata and Ibrahim Fofana and Konin Koua}, title = {On Fourier asymptotics of a generalized Cantor measure}, journal = {Colloquium Mathematicae}, volume = {120}, year = {2010}, pages = {109-122}, zbl = {1189.42002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-6} }
Bérenger Akon Kpata; Ibrahim Fofana; Konin Koua. On Fourier asymptotics of a generalized Cantor measure. Colloquium Mathematicae, Tome 120 (2010) pp. 109-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-6/