We consider the socle deformations arising from formal deformations of a class of Koszul self-injective special biserial algebras which occur in the study of the Drinfeld double of the generalized Taft algebras. We show, for these deformations, that the Hochschild cohomology ring modulo nilpotence is a finitely generated commutative algebra of Krull dimension 2.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-4, author = {Nicole Snashall and Rachel Taillefer}, title = {Hochschild cohomology of socle deformations of a class of Koszul self-injective algebras}, journal = {Colloquium Mathematicae}, volume = {120}, year = {2010}, pages = {79-93}, zbl = {1236.16011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-4} }
Nicole Snashall; Rachel Taillefer. Hochschild cohomology of socle deformations of a class of Koszul self-injective algebras. Colloquium Mathematicae, Tome 120 (2010) pp. 79-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-4/