We characterize the dynamics of the finite time blow-up solutions with minimal mass for the focusing mass-critical Hartree equation with H¹(ℝ⁴) data and L²(ℝ⁴) data, where we make use of the refined Gagliardo-Nirenberg inequality of convolution type and the profile decomposition. Moreover, we analyze the mass concentration phenomenon of such blow-up solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-2, author = {Changxing Miao and Guixiang Xu and Lifeng Zhao}, title = {On the blow-up phenomenon for the mass-critical focusing Hartree equation in R4}, journal = {Colloquium Mathematicae}, volume = {120}, year = {2010}, pages = {23-50}, zbl = {1193.35211}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-2} }
Changxing Miao; Guixiang Xu; Lifeng Zhao. On the blow-up phenomenon for the mass-critical focusing Hartree equation in ℝ⁴. Colloquium Mathematicae, Tome 120 (2010) pp. 23-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-2/