We characterize the dynamics of the finite time blow-up solutions with minimal mass for the focusing mass-critical Hartree equation with H¹(ℝ⁴) data and L²(ℝ⁴) data, where we make use of the refined Gagliardo-Nirenberg inequality of convolution type and the profile decomposition. Moreover, we analyze the mass concentration phenomenon of such blow-up solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-2,
author = {Changxing Miao and Guixiang Xu and Lifeng Zhao},
title = {On the blow-up phenomenon for the mass-critical focusing Hartree equation in R4},
journal = {Colloquium Mathematicae},
volume = {120},
year = {2010},
pages = {23-50},
zbl = {1193.35211},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-2}
}
Changxing Miao; Guixiang Xu; Lifeng Zhao. On the blow-up phenomenon for the mass-critical focusing Hartree equation in ℝ⁴. Colloquium Mathematicae, Tome 120 (2010) pp. 23-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-2/