A characterization of Sobolev spaces via local derivatives
David Swanson
Colloquium Mathematicae, Tome 120 (2010), p. 157-167 / Harvested from The Polish Digital Mathematics Library

Let 1 ≤ p < ∞, k ≥ 1, and let Ω ⊂ ℝⁿ be an arbitrary open set. We prove a converse of the Calderón-Zygmund theorem that a function fWk,p(Ω) possesses an Lp derivative of order k at almost every point x ∈ Ω and obtain a characterization of the space Wk,p(Ω). Our method is based on distributional arguments and a pointwise inequality due to Bojarski and Hajłasz.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:284327
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-11,
     author = {David Swanson},
     title = {A characterization of Sobolev spaces via local derivatives},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {157-167},
     zbl = {1206.46036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-11}
}
David Swanson. A characterization of Sobolev spaces via local derivatives. Colloquium Mathematicae, Tome 120 (2010) pp. 157-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm119-1-11/