Local admissible convergence of harmonic functions on non-homogeneous trees
Massimo A. Picardello
Colloquium Mathematicae, Tome 120 (2010), p. 419-444 / Harvested from The Polish Digital Mathematics Library

We prove admissible convergence to the boundary of functions that are harmonic on a subset of a non-homogeneous tree equipped with a transition operator that satisfies uniform bounds suitable for transience. The approach is based on a discrete Green formula, suitable estimates for the Green and Poisson kernel and an analogue of the Lusin area function.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:283678
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-5,
     author = {Massimo A. Picardello},
     title = {Local admissible convergence of harmonic functions on non-homogeneous trees},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {419-444},
     zbl = {1215.05032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-5}
}
Massimo A. Picardello. Local admissible convergence of harmonic functions on non-homogeneous trees. Colloquium Mathematicae, Tome 120 (2010) pp. 419-444. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-5/