Convergence to stable laws and a local limit theorem for stochastic recursions
Mariusz Mirek
Colloquium Mathematicae, Tome 120 (2010), p. 705-720 / Harvested from The Polish Digital Mathematics Library

We consider the random recursion Xx=MXn-1x+Q+N(Xn-1x), where x ∈ ℝ and (Mₙ,Qₙ,Nₙ) are i.i.d., Qₙ has a heavy tail with exponent α > 0, the tail of Mₙ is lighter and N(Xn-1x) is smaller at infinity, than MXn-1x. Using the asymptotics of the stationary solutions we show that properly normalized Birkhoff sums Sx=k=0nXkx converge weakly to an α-stable law for α ∈ (0,2]. The related local limit theorem is also proved.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:283412
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-21,
     author = {Mariusz Mirek},
     title = {Convergence to stable laws and a local limit theorem for stochastic recursions},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {705-720},
     zbl = {1188.60012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-21}
}
Mariusz Mirek. Convergence to stable laws and a local limit theorem for stochastic recursions. Colloquium Mathematicae, Tome 120 (2010) pp. 705-720. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-21/