We show that the boundedness, p > 2, of the Riesz transform on a complete non-compact Riemannian manifold with upper and lower Gaussian heat kernel estimates is equivalent to a certain form of Sobolev inequality. We also characterize in such terms the heat kernel gradient upper estimate on manifolds with polynomial growth.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-20,
author = {Thierry Coulhon and Adam Sikora},
title = {Riesz meets Sobolev},
journal = {Colloquium Mathematicae},
volume = {120},
year = {2010},
pages = {685-704},
zbl = {1194.58027},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-20}
}
Thierry Coulhon; Adam Sikora. Riesz meets Sobolev. Colloquium Mathematicae, Tome 120 (2010) pp. 685-704. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-20/