We show that the boundedness, p > 2, of the Riesz transform on a complete non-compact Riemannian manifold with upper and lower Gaussian heat kernel estimates is equivalent to a certain form of Sobolev inequality. We also characterize in such terms the heat kernel gradient upper estimate on manifolds with polynomial growth.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-20, author = {Thierry Coulhon and Adam Sikora}, title = {Riesz meets Sobolev}, journal = {Colloquium Mathematicae}, volume = {120}, year = {2010}, pages = {685-704}, zbl = {1194.58027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-20} }
Thierry Coulhon; Adam Sikora. Riesz meets Sobolev. Colloquium Mathematicae, Tome 120 (2010) pp. 685-704. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-20/