We study the boundary behaviour of holomorphic functions in the Hardy-Sobolev spaces , where is a smooth, bounded convex domain of finite type in ℂⁿ, by describing the approach regions for such functions. In particular, we extend a phenomenon first discovered by Nagel-Rudin and Shapiro in the case of the unit disk, and later extended by Sueiro to the case of strongly pseudoconvex domains.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-18,
author = {Marco M. Peloso and Hercule Valencourt},
title = {Boundary behaviour of holomorphic functions in Hardy-Sobolev spaces on convex domains in Cn},
journal = {Colloquium Mathematicae},
volume = {120},
year = {2010},
pages = {649-668},
zbl = {1192.32007},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-18}
}
Marco M. Peloso; Hercule Valencourt. Boundary behaviour of holomorphic functions in Hardy-Sobolev spaces on convex domains in ℂⁿ. Colloquium Mathematicae, Tome 120 (2010) pp. 649-668. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-18/