Besov spaces of holomorphic functions in tubes over cones have been recently defined by Békollé et al. In this paper we show that Besov p-seminorms are invariant under conformal transformations of the domain when n/r is an integer, at least in the range 2-r/n < p ≤ ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-11, author = {G. Garrig\'os}, title = {M\"obius invariance of analytic Besov spaces in tube domains over symmetric cones}, journal = {Colloquium Mathematicae}, volume = {120}, year = {2010}, pages = {559-568}, zbl = {1196.32016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-11} }
G. Garrigós. Möbius invariance of analytic Besov spaces in tube domains over symmetric cones. Colloquium Mathematicae, Tome 120 (2010) pp. 559-568. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-2-11/