We study the holomorphic Hardy-Orlicz spaces , where Ω is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in ℂⁿ. The function Φ is in particular such that for some p > 0. We develop maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space BMOA(Ω). As a consequence, we characterize those Hankel operators which are bounded from into ¹(Ω).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-5, author = {Aline Bonami and Sandrine Grellier}, title = {Hankel operators and weak factorization for Hardy-Orlicz spaces}, journal = {Colloquium Mathematicae}, volume = {120}, year = {2010}, pages = {107-132}, zbl = {1195.32002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-5} }
Aline Bonami; Sandrine Grellier. Hankel operators and weak factorization for Hardy-Orlicz spaces. Colloquium Mathematicae, Tome 120 (2010) pp. 107-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-5/