Hankel operators and weak factorization for Hardy-Orlicz spaces
Aline Bonami ; Sandrine Grellier
Colloquium Mathematicae, Tome 120 (2010), p. 107-132 / Harvested from The Polish Digital Mathematics Library

We study the holomorphic Hardy-Orlicz spaces Φ(Ω), where Ω is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in ℂⁿ. The function Φ is in particular such that ¹(Ω)Φ(Ω)p(Ω) for some p > 0. We develop maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space BMOA(Ω). As a consequence, we characterize those Hankel operators which are bounded from Φ(Ω) into ¹(Ω).

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:283960
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-5,
     author = {Aline Bonami and Sandrine Grellier},
     title = {Hankel operators and weak factorization for Hardy-Orlicz spaces},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {107-132},
     zbl = {1195.32002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-5}
}
Aline Bonami; Sandrine Grellier. Hankel operators and weak factorization for Hardy-Orlicz spaces. Colloquium Mathematicae, Tome 120 (2010) pp. 107-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-5/