A.e. convergence of anisotropic partial Fourier integrals on Euclidean spaces and Heisenberg groups
D. Müller ; E. Prestini
Colloquium Mathematicae, Tome 120 (2010), p. 333-347 / Harvested from The Polish Digital Mathematics Library

We define partial spectral integrals SR on the Heisenberg group by means of localizations to isotropic or anisotropic dilates of suitable star-shaped subsets V containing the joint spectrum of the partial sub-Laplacians and the central derivative. Under the assumption that an L²-function f lies in the logarithmic Sobolev space given by log(2+Lα)fL², where Lα is a suitable “generalized” sub-Laplacian associated to the dilation structure, we show that SRf(x) converges a.e. to f(x) as R → ∞.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:283574
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-18,
     author = {D. M\"uller and E. Prestini},
     title = {A.e. convergence of anisotropic partial Fourier integrals on Euclidean spaces and Heisenberg groups},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {333-347},
     zbl = {1205.22008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-18}
}
D. Müller; E. Prestini. A.e. convergence of anisotropic partial Fourier integrals on Euclidean spaces and Heisenberg groups. Colloquium Mathematicae, Tome 120 (2010) pp. 333-347. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-18/