We define partial spectral integrals on the Heisenberg group by means of localizations to isotropic or anisotropic dilates of suitable star-shaped subsets V containing the joint spectrum of the partial sub-Laplacians and the central derivative. Under the assumption that an L²-function f lies in the logarithmic Sobolev space given by , where is a suitable “generalized” sub-Laplacian associated to the dilation structure, we show that converges a.e. to f(x) as R → ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-18, author = {D. M\"uller and E. Prestini}, title = {A.e. convergence of anisotropic partial Fourier integrals on Euclidean spaces and Heisenberg groups}, journal = {Colloquium Mathematicae}, volume = {120}, year = {2010}, pages = {333-347}, zbl = {1205.22008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-18} }
D. Müller; E. Prestini. A.e. convergence of anisotropic partial Fourier integrals on Euclidean spaces and Heisenberg groups. Colloquium Mathematicae, Tome 120 (2010) pp. 333-347. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-18/