Asymptotic spherical analysis on the Heisenberg group
Jacques Faraut
Colloquium Mathematicae, Tome 120 (2010), p. 233-258 / Harvested from The Polish Digital Mathematics Library

The asymptotics of spherical functions for large dimensions are related to spherical functions for Olshanski spherical pairs. In this paper we consider inductive limits of Gelfand pairs associated to the Heisenberg group. The group K = U(n) × U(p) acts multiplicity free on 𝓟(V), the space of polynomials on V = M(n,p;ℂ), the space of n × p complex matrices. The group K acts also on the Heisenberg group H = V × ℝ. By a result of Carcano, the pair (G,K) with G = K ⋉ H is a Gelfand pair. The main results of the paper are the asymptotics of the spherical functions related to the pair (G,K) for large n and p. This analysis involves the asymptotics of shifted Schur functions.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:283936
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-13,
     author = {Jacques Faraut},
     title = {Asymptotic spherical analysis on the Heisenberg group},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {233-258},
     zbl = {1189.43007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-13}
}
Jacques Faraut. Asymptotic spherical analysis on the Heisenberg group. Colloquium Mathematicae, Tome 120 (2010) pp. 233-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-13/