A weak type (1,1) estimate for a maximal operator on a group of isometries of a homogeneous tree
Michael G. Cowling ; Stefano Meda ; Alberto G. Setti
Colloquium Mathematicae, Tome 120 (2010), p. 223-232 / Harvested from The Polish Digital Mathematics Library

We give a simple proof of a result of R. Rochberg and M. H. Taibleson that various maximal operators on a homogeneous tree, including the Hardy-Littlewood and spherical maximal operators, are of weak type (1,1). This result extends to corresponding maximal operators on a transitive group of isometries of the tree, and in particular for (nonabelian finitely generated) free groups.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:283651
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-12,
     author = {Michael G. Cowling and Stefano Meda and Alberto G. Setti},
     title = {A weak type (1,1) estimate for a maximal operator on a group of isometries of a homogeneous tree},
     journal = {Colloquium Mathematicae},
     volume = {120},
     year = {2010},
     pages = {223-232},
     zbl = {1193.43011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-12}
}
Michael G. Cowling; Stefano Meda; Alberto G. Setti. A weak type (1,1) estimate for a maximal operator on a group of isometries of a homogeneous tree. Colloquium Mathematicae, Tome 120 (2010) pp. 223-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-12/