We give a simple proof of a result of R. Rochberg and M. H. Taibleson that various maximal operators on a homogeneous tree, including the Hardy-Littlewood and spherical maximal operators, are of weak type (1,1). This result extends to corresponding maximal operators on a transitive group of isometries of the tree, and in particular for (nonabelian finitely generated) free groups.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-12, author = {Michael G. Cowling and Stefano Meda and Alberto G. Setti}, title = {A weak type (1,1) estimate for a maximal operator on a group of isometries of a homogeneous tree}, journal = {Colloquium Mathematicae}, volume = {120}, year = {2010}, pages = {223-232}, zbl = {1193.43011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-12} }
Michael G. Cowling; Stefano Meda; Alberto G. Setti. A weak type (1,1) estimate for a maximal operator on a group of isometries of a homogeneous tree. Colloquium Mathematicae, Tome 120 (2010) pp. 223-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm118-1-12/