A note on global integrability of upper gradients of p-superharmonic functions
Outi Elina Maasalo ; Anna Zatorska-Goldstein
Colloquium Mathematicae, Tome 116 (2009), p. 281-288 / Harvested from The Polish Digital Mathematics Library

We consider a complete metric space equipped with a doubling measure and a weak Poincaré inequality. We prove that for all p-superharmonic functions there exists an upper gradient that is integrable on H-chain sets with a positive exponent.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:283787
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-2-10,
     author = {Outi Elina Maasalo and Anna Zatorska-Goldstein},
     title = {A note on global integrability of upper gradients of p-superharmonic functions},
     journal = {Colloquium Mathematicae},
     volume = {116},
     year = {2009},
     pages = {281-288},
     zbl = {1178.30063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-2-10}
}
Outi Elina Maasalo; Anna Zatorska-Goldstein. A note on global integrability of upper gradients of p-superharmonic functions. Colloquium Mathematicae, Tome 116 (2009) pp. 281-288. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-2-10/