We consider a complete metric space equipped with a doubling measure and a weak Poincaré inequality. We prove that for all p-superharmonic functions there exists an upper gradient that is integrable on H-chain sets with a positive exponent.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-2-10, author = {Outi Elina Maasalo and Anna Zatorska-Goldstein}, title = {A note on global integrability of upper gradients of p-superharmonic functions}, journal = {Colloquium Mathematicae}, volume = {116}, year = {2009}, pages = {281-288}, zbl = {1178.30063}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-2-10} }
Outi Elina Maasalo; Anna Zatorska-Goldstein. A note on global integrability of upper gradients of p-superharmonic functions. Colloquium Mathematicae, Tome 116 (2009) pp. 281-288. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-2-10/