On the ergodic decomposition for a cocycle
Jean-Pierre Conze ; Albert Raugi
Colloquium Mathematicae, Tome 116 (2009), p. 121-156 / Harvested from The Polish Digital Mathematics Library

Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure mG. We consider the map τφ defined on X × G by τφ:(x,g)(τx,φ(x)g) and the cocycle (φ)n generated by φ. Using a characterization of the ergodic invariant measures for τφ, we give the form of the ergodic decomposition of μ(dx)mG(dg) or more generally of the τφ-invariant measures μχ(dx)χ(g)mG(dg), where μχ(dx) is χ∘φ-conformal for an exponential χ on G.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:286628
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-1-8,
     author = {Jean-Pierre Conze and Albert Raugi},
     title = {On the ergodic decomposition for a cocycle},
     journal = {Colloquium Mathematicae},
     volume = {116},
     year = {2009},
     pages = {121-156},
     zbl = {1177.37014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-1-8}
}
Jean-Pierre Conze; Albert Raugi. On the ergodic decomposition for a cocycle. Colloquium Mathematicae, Tome 116 (2009) pp. 121-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-1-8/