Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure . We consider the map defined on X × G by and the cocycle generated by φ. Using a characterization of the ergodic invariant measures for , we give the form of the ergodic decomposition of or more generally of the -invariant measures , where is χ∘φ-conformal for an exponential χ on G.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-1-8, author = {Jean-Pierre Conze and Albert Raugi}, title = {On the ergodic decomposition for a cocycle}, journal = {Colloquium Mathematicae}, volume = {116}, year = {2009}, pages = {121-156}, zbl = {1177.37014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-1-8} }
Jean-Pierre Conze; Albert Raugi. On the ergodic decomposition for a cocycle. Colloquium Mathematicae, Tome 116 (2009) pp. 121-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-1-8/