Let G be an abelian group and ◻ G its square subgroup as defined in the introduction. We show that the square subgroup of a non-homogeneous and indecomposable torsion-free group G of rank two is a pure subgroup of G and that G/◻ G is a nil group.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-1-2, author = {A. M. Aghdam and A. Najafizadeh}, title = {Square subgroups of rank two abelian groups}, journal = {Colloquium Mathematicae}, volume = {116}, year = {2009}, pages = {19-28}, zbl = {1186.20037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-1-2} }
A. M. Aghdam; A. Najafizadeh. Square subgroups of rank two abelian groups. Colloquium Mathematicae, Tome 116 (2009) pp. 19-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm117-1-2/